
Neural  Network Processing for Real Time, 
Sub-bel, Hyperspectral Data Extraction 

Robert Stirbl, James  Breckinridge, Curtis 
Padgett,  Ayanna  Howard,  Tom  Chrien,  and 

Kenneth  Brown 

Jet  Propulsion  Laboratory,  California  Institute 
of  Technology 

4800 Oak  Grove  Drive,  Pasadena,  CA 91  109- 
8099 

Abstract 

The  goal of  many applications  that  using 
hyperspectral  images is  to describe the 
constituent  components of each  pixel  in a scene. 
Typically, a set of relevant  end  members are 
selected  and a best fit mixing model is  used to 
derive  the  proportions  of  these  end  members 
found in every  pixel. For applications where the 
goal  is  to  detect  and  possibly  recognize  targets 
that  occupy a portion of a hyperspectral  pixel, 
one need not decode the  background to 
determine if a given  target  spectra  is  contained 
in  the  pixel  signature. This takes  computational 
resources  and  may  introduce  inaccuracies  due to 
modeling simplifications.  Our  approach  places 
each  pixel  in a hyperspectral  scene  into  one of n 
classes  based on its distance to a set of n cluster 
prototypes.  The  cluster  prototypes  have  been 
previously  identified  using a modified  clustering 
algorithm  based  on  prior  sensed  data. 
Associated  with  each cluster is a set of linear 
filters  specifically  designed to separate a target 
embedded in a background signature from other 
typical  signatures in the  cluster.  Each  pixel  is 
projected  on this set  of  filters  and  the  result  is 
fed into a trained  neural  network  for 
classification. 

A detailed  description of this  divide  and  conquer 
algorithm is provided. We outline  our 
methodology  for generating  training  and  testing 
data, describe  modifications  to a standard 
clustering  algorithm  incorporating a priori 
knowledge  about  the  targets,  explain how the 
linear  filters are designed,  and  provide  details in 
training  the  neural  network  classifier. 

Evaluations  of  the  overall  algorithm  and  each of 
the  specified  changes  demonstrate  the  feasibility 
of these  ideas. For pixels  with  embedded  targets 
taking  up  no  more  than 10% of  the area, 
detection  rates  approach 99.9% with a false 
positive rate of less than 10". 

1. Introduction 

The objective of this project  is to develop 
algorithms  for  autonomous  detection  and 
recognition of sub-pixel  objects  in  hyperspectral 
data. The evaluation  of  these  algorithms  is  based 
on  inserting  actual  target  signatures  into  real 
scenes  of  hyperspectral images. Each  pixel  in 
the scene  is  filtered  through a bank of templates 
designed to minimize  background  elements  and 
maximize  potential  target  elements in the 
signature. The filtered  result  is  then  evaluated 
with a classifier to determine if a target is  indeed 
present in the  pixel. 

The  scenes  used are generated by the  &borne 
- Visible  _Infra&ed imaging  Spectrometer 
(AVIRIS),  an  optical sensor that  delivers 
calibrated  images of the  upwelling  radiance  in 
224 spectral  channels, or bands,  with 
wavelengths  from 400- 2500-nanometers (nm). 
AVIRIS  uses a scanning mirror to sweep  back 
and forth, producing 614 pixels  for  the 224 
detectors  during  each  scan.  Each  pixel  produced 
by  the  instrument  covers a range of 
approximately 20-mer square area on the 
ground,  with  some  overlap,  yielding a ground 
swath of  about 1 l-km. The instrument flies 
aboard a NASA ER-2 airplane at approximately 
20-km above  sea  level.  AVIRIS  has flown all 
across North America, many parts of Europe, 
and  South  America. 

Imaging  Spectroscopy  is  the  acquisition of 
images  where  for  each spatial resolution  element 
in the  image a spectrum of the  energy  arriving  at 
the  sensor  is  measured.  These spectra are used 
to derive  information  based  on  the  signature of 
the  interation of  matter  and  energy  expressed in - 
the  spectrum. This spectroscopic  approach  has 
been used in the  laboratory  and in astronomy  for 
many  years. AVIRIS measures  the  upwelling 
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radiance  spectrum  from 400 to 2500-nm at 10- 
nrn resolution.  From  the  molecular  absorptions 
and  constituent  scattering characteristics 
expressed in this  spectrum,  AVIRIS  is able to 
make quantitative measurements  including 
detecting  and  identifying  the surface and 
atmospheric  constituents  present  in  a  given - 
region. 

The  target data inserted  into  the  background  was 
developed  from  the  Forest  Radiance I 
experiment (August, 1995). provided  by  SITAC. 
The database contains  reference  signatures for a 
number of potentially  interesting  military 
targets. The spectra were modified to minimize 
the  differences  (e.g.  number of  bands  sampled, 
quality) between  the  target  and the AWUS 
background so as not to bias  the  results. The 
scenario we are examining  involves  examining 
ground  images  from  AVIRIS to determine  if the 
spectral signature from  any  of  the  20-meter 
square pixels  contains, as a  constituent  element, 
a  member of a  given (known spectral  signatures) 
target  set.  The images  taken  represent  scenery 

from  a  typical forward engagement area in a 
battle  situation. In real  time, we intend to 
remove  atmospheric effects from  the data, 
reduce  its  dimensionality  using  an  optimal  set of 
linear filters,  and spatially locate  targets in the 
scene  with  a  neural 
network classifier. This can be accomplished on 
a  pixel  by  pixel basis,  allowing  a  massively 
parallel  implementation.  Figure 1 provides an 
overview  of our approach for  detecting  a known 
set of objects  in  hyperspectral  imagery. This 
report describes the methodology used to 
investigate  sub-pixel  detection  and our initial 
evaluation of an  algorithm suitable for highly 
parallel  implementation  specifically  running  on 
an  analog,  low  power processor. 

1 Neural  Network  Classifier 
Pixels Clustered Targemon-target 

Using Nearest Neighbor 

I-, 
Projected Values of Pixel 

on Signatures 

Figure 1: The  data  processing  path for each  pixel from the sensed image.  The  raw 
pixel is corrected for abnosphere,  assoicated  with a particular  cluster,  projected  onto 
a set of filters  (eigenvectors) for that  cluster  and  then classified with  the  neural 
network. 
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2. AVIRIS Data and Target  Description 

As  described earlier, the AVIRIS sensor 
generates 224 bands  of spectral information  for 
each  pixel.  AVIRIS  collects  spectra 
sequentially,  using  a  whiskbroom scan 
mechanism. The radiance from  an 
approximately 20 m2 patch on  the  ground  is 
dispersed thru four grating spectrometers  to 
obtain a  spectrum  consisting of 224 channels 
[7]. Each  spectral  channel is calibrated to units 
of spectral radiance by subtraction of a dark 
offset level, formed by an average  of 64 dark 
measurements each scan line,  and  then  scaled to 
units of radiance using  a  set of calibration 
coefficients [8]. A  mild correction term,  derrived 
by  observing the signal  of an onboard calibrator, 
is  applied to correct for minor instability  in  the 
sensor's  radiometric  performance [9]. The 
spectral  response function of the  spectrometer 
channels is also measured  using  a  scanning 
monochromator [8] and  parameters of a  best  fit 
Gaussian  function are determined. 

The  AVIRIS data is inverted to units  of spectral 
reflectance  using  a radiative transfer model 
estimate of atmospheric  path  radiance  and 
reflected radiance (ref 4). The model makes use 
of a model fit of the 940 nm water  vapor feature 
fur  each  AVIRIS spectrum. The  presence  of 
surface water. such as from vegetation,  and 

reflectance slope is  allowed  for in the  fitting 
process.  The best fit water  vapor  amount  is 
used to index a  look-up  table of pre-computed 
path  and  reflected  radiance values. Inversion  to 
units  of  reflectance  is  computed as the difference 
between the measured  radiance  and the LUT 
path  radiance  divided  by the LUT reflected 
radiance.  The  quality of resulting  reflectance 
spectra has been  validated  by  field calibration 
experiment [8], and  by  qualitative  inspection of 
the  spectra. 

The  scenes used in this study are Cuprite (see 
Figure l), and the ARM site (see  Figure 5). 
Target spectra  were  obtained  from  ground truth 
measurements  conducted at the F R 1  experiment 
[l I]. The  target  spectra are reduced to 
reflectance by  comparing the unknown  target to 
a  known  reflectance  standard. The reflectance of 
the target  is  determined  by  computing  the ratio 
of the signals  between target  and  standard 
multiplied  by the reflectance  of the standard. 
These  reflectance data were further processed 
using  a  median  filter to remove  noisy  channels, 
interpolated  to 1 nm resolution  using  a  spline 
function,  and  then  resampled  using  the 
appropriate AVIRIS spectral  response  function. 
These  steps are required to account  for  the 
different  spectral  samplings of the  field 
spectrometers  and the AVIRISsensor. 
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Figure 2. Average  target  signatures  obtained from the FRl experiment.  Each  example is the 
average of 8 signatures of a  given  target. 
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Targets are mixed  into  the AVIRIS scene  at an 
arbitrary fractional level  of x% by forming  the 
composite  spectra  that  are  the  sum of x*target + 
(Z-x)*background. For  problems in which it 
made  sense  to  examine  either  sensor  or  target 
noise,  we  defined  the  signal-to-noise ratio (SNR) 
as 50% of the  reflectance  value  divided by the 
deviation of  the 

noise  distribution.  For  all  cases, we added 
randomly  generated zero mean Gaussian  values 
to inject  the  noise.  Figure 3 provides  an  example 
of randomly  drawn  background  pixels (from a 
single cluster) and  pixels  from  the  same 
distribution with a 10% target mix (again  drawn 
randomly). As the  caption in 
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Figure 3 indicates,  separating  the mixed target 
examples  from  the  background  elements, in this 
case of a single  cluster, is an  extremely  difficult 
task.  The  problem is  made  even  more  difficult in 
that  the number of allowable  false  positives 
must  remain  quite  low  due  to  the  large  number 
of samples in a given  scene.  Even  with a false 
positive rate of 1 :  1 o o 0 0 ,  such a detection 
algorithm run on a scene with one  million  pixels 
would  generate  about 1 0 0  false  alarms.  The  next 
section  describes  our  approach for  detecting the 
elements in Figure 3 that  are  targets. 

Figure 3. Randomly  sampled  background  pixels  (black)  and  targets  mixed  at 10% 
(white)  drawn  from  the same cluster.  The  bands  at 0 were  not  used  for  detection 
purposes (water  bands).  Although  there seems to be considerable  separation  in  the 
first third  of  the  graph, full 1h of  the  target  data is completely  covered  by  the 
background  spectra  (the  black lies over  the white plots). 
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3. Algorithm Description 

Given  a  set  of targets T, the  goal  of  the 
algorithm  is to detect  any  element t E T in real 
time that is present in the hyper-spectral  pixel of 
a  scene. To meet the  real  time  goals of the 
algorithm,  the  system  developed  utilizes  two 
multi-processor  boards (SHARC 16 processor 
cards) slotted  into the main bus ( X I )  of a 
personal  computer. These 32  processors perform 
atmospheric  correction  for  each  sensor  pixel, 
assign  it to a  cluster for evaluation,  and evaluate 
each  cluster.  The  evaluation is done  by  first 
projecting each pixel onto 40 orthogonal 
dimensions  specific to each cluster  and then 
analyzing the 32 resultant values  with  a 
previously  trained  neural  network  specific to the 
cluster. 

The  atmospheric  correction  routine  consists of 
all  operations on pixels  necessary to remove 
gross  atmospheric  and  sensor  bias  from the raw 
sensor data. This pre-processing step normalizes 
each  pixel  with  respect to sun angle,  water  vapor 
content  (atmospheric  components of variation) 
and  incorporates  any  calibration  information 
regarding the sensor.  These  variants  impact 
different  portions  of the spectra in  stereotypical 
fashion  and  may  effectively hide key  features 
useful  in the discrimination of  background 
spectra from those containing  targets.  Inputs to 
this routine can be obtained  from  telemetry  (for 
sun angle  calculations),  raw  spectral  bands  (for 
estimating  water  vapor),  and  pre-flight ( o r  in- 
flight)  sensor calibration information. The goal 
is to achieve  quality  reflectance  data  in  real  time 
with  minimal  variation  over  key feature regions. 
For this study,  reflectance data was  used in 
generating  all  the  results-we  have  yet to 
determine  if standard routines are suitable for 
implementation  in  the described system (in real 
time). 

The  clustering step in the  algorithm  is 
accomplished  with  a  simple  nearest  neighbor 
algorithm [4]. Each  normalized  pixel  is 
compared to a  set of  pre-computed spectra 
prototypes.  The  pixel is grouped  with  the  closest 

prototype  (Euclidean  distance). All subsequent 
operations on the  pixel are based on the  group 
that it is  associated  with. This step partitions  the 
initial  problem  into n distributions of spectra 
associated  with  the  prototype  spectra. As the 
evaluation of the  pixel  is  based on our  a  priori 
knowledge  about  these  distributions,  the 
prototypes  used need to reflect  the  underlying 
distributions of the  scene.  How  the  prototypes 
are generated  is  described  later  in this section. 

The filtering step is an orthogonal  sub-space 
projection  of  each  pixel. It is used to optimally 
(linear)  separate  the  background  pixels of  each 
group with targets (signal) from  those  without 
(noise). Each  pixel is projected  onto the 32 
basis  vectors  for its group after  subtracting  out 
the  mean  of the group. This is a  standard 
technique used to reduce the dimensionality  of 
the pixel (224->32) while  preserving  as  much  of 
the  signal  as  possible. As the  classifier uses  the 
32 resultant  values to determine  if  the  pixel 
contains  a  target, the reduced  number of 
dimensions  allows  for  fewer  examples  in 
learning  the  decision  boundaries  for  the  task 
(typically  O(d2)  for  a non-linear classification 
problem  with  d  dimensions). 

The  last  step uses  a  neural  network  classifier to 
evaluate whether  or  not  the  pixel  contains  a 
target  from T. The  neural  network  for  each 
group  takes  as  input the projected  values  of  the 
pixel  and  outputs  a value. Values  above  a 
threshold are considered  pixels  with  targets  and 
those  below are assigned to background.  Both 
the  threshold  and  neural  network  parameters are 
learned  from  training  examples  based on spectra 
clustered in the  associated  group. 
The  effectiveness of the evaluation  requires  that 
the  prototypes  generated  and  the  spectra  used  in 
training  the  classifier  must be derived from 
scenery  with  roughly  the  same distributions as 
encountered in the  operational  test.  The 
following  pseudo code outlines  the  important 
features of the  algorithm. 
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Let pxy be a raw  pixel  located  at  (x,y) in the 
scene: 
for all x,y- 
( 1 )  pxy = AC(p,,,sun-angIe,sensor-calibration) 

for all pxy  in i- 
(2) p x y  + mini( I I  p x y  - Pi I I  ) 

(3) X Ci@x,TWi) < thri then turiet(x,y) 
otherwise background(x,y) 

Where AC ( ) is the  atmospheric  correction, pxy 
is the  corrected  pixel, is  the  transpose 
operation, Pi is the closest prototype,  Wi  is the 
filter  set for group  i,  and Ci is  the  neural 
network  classifier for that  group. t h r I  is 
threshold  value  discriminating  between  pixels 
with targets  and  those  without.  Obviously, in a 
parallel  implementation,  the two for loops can 
be overlapped so that the entire  scene need not 
be segmented (2) prior to projecting  the 
corrected  pixel  and  evaluating  it  by  the  neural 
network (3). 

Steps 2 and 3 in the above  algorithm  require 
prior  knowledge  about the distribution of pixel 
spectra in the scene being  evaluated. This 
knowledge  consists of: 
1) A set of background  prototypes  derived 

from  scene characteristics that are used to 
segement  the  scene. 

2) A set of linear filters for each  background 
type  used to optimally separate targets 
imbedded  in background  pixels  from other 
background  pixel  examples. 

3) A set of expert neural  network  classifiers 
that  receive as input  the  projections of the 
corrected  pixels  on their respective  filter set. 
The  neural  networks are required to respond 
with 1 when targets are embedded  in the 
pixels  and -1 otherwise.  The  resultant 
output is  thresholded to achieve  the  desired 
level  of false positives. 

The  remainder of this  section describes how 
each of these  components are generated  for a 
given  set T of target  signatures  and a known 
distribution of background  signatures in which 
the  targets will be found.  Optimizing  these 
components directly improves  the  performance 

of  the  algorithm in detecting  targets  as will be 
shown in the  results  section. 

A. Clustering 

To effectively  simplify  the  distribution  of  data 
classified by  an expert  neural  network,  we 
partition  the incoming  pixels  into a number of 
predetermined  groups  by  using the prototypes of 
a clustering  algorithm  (designated  as  the  set  Pi). 
The  clustering  algorithm  is  run  on  previously 
aquired  data  that  reflects the distribution of the 
scene being  analyzed. The prototypes are the 
averages of the  clusters  identified  by the 
algorithm. To achieve  good  results,  the  clusters 
should  partition  the  scene  pixels  into a set of n 
groups  each  having a narrower  (and  more 
defined)  distribution of constituent  pixels. This 
will allow  us  to  employ filters  that  effectively 
minimze this distribution,  highhghting  potential 
pixels  containing  elements  from  the  target  set. 

We  employed two different  clustering  algorithms 
in analyzing  the  overall  algorithm.  The  first 
algorithm  is a standard  clustering  technique 
outlined in  Duda  and  Hart  [Duda & Hart].  It 
uses a standard  least  squares  criterion to 
minimize  the  distance  between  each of n 
randomly  selected  groups.  The  criterion 
minimized  by  the clustering  algorithm  is: 

where i is  one of n clusters  and pj is a pixel  in 
that  cluster.  The  clustering  algorithm  iterates 
through  each  pixel  and  determines if moving  the 
pixel to another  group  reduces  the  overall  cost. 
If it d m ,  the  pixel  is  moved to the  other  group 
and  the  associated  averages of  each  prototype 
cluster  are  recalculated. This continues  until  the 
moving  of  pixels  no  longer  reduces  the  overall 
cost. The  resultant  cluster  prototypes are then 
employed by our  algorithm to segment  the  scene. 

Two  things  are  worth  noting about this 
technique.  Firstly,  as n increases,  the  overall 
cost  is  likely  to go down as a larger  number  of 
groups  allow  the  clustering  algorithm  to  better 
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fit the  given  distribution.  The  narrower 
distributions are more  amenable  to  masking  by 
the  filters in step 3 of our algorithm,  which 
should  result in better  detection  rates. 
Obviously,  signal  to  noise issues, the  underlying 
true pixel distributions,  and the additional 
computational  cost  in step 2 of our  algorithm 
effectively  limit the size of n and  make  it 
problem  &pendent. Nonetheless, more groups 
should  increase the performance  of the detection 
algorithm.  Secondly, the clustering algorithm, as 
described, is independent of the detection 
problem.  It does not take into  account  any 
information  that  we  might  have  concerning the 
target  set. The size of the distribution for 
clusters that  closely  resemble  targets  could be 
quite wide thus  making it more difficult to detect 
target  pixels  in  them. As targets are typically 
camouflaged to resemble the background, this is 
a  potentially  serious  problem.  Similarly,  it 
makes little  sense to have  narrow  distributions 
for clusters whose  elements  highly contrast with 
the targets (making  them easy to detect). 

What is needed are narrow  distributions of 
backgrounds that resemble targets in our set  and 
wider distributions for those backgrounds that 
contrast with  them. To accomplish this, we 
modified  the  criterion given in ( 1 )  to reflect 
target knowledge  and  then evaluate this modified 
algorithm  in  the  results  section.  The  change  in 
( 1 )  consists of simply  weighting  each  pixel  by  a 
term  reflecting its closeness with elements  in  the 
target  set.  The modified criterion is given  by: 

were is an  element of T, the target set. Pixels 
that are close  to  targets  will be weighted more in 
the  cost of the  clustering  algorithm  than  those 
further  away  allowing  the  clustering  algorithm 
to naturally  provide  more  resources  (groups) to 
those  background  types. 
B. Filter Sets 

The  filters  associated with  a  given  prototype are 
derived  from  the  distribution of its background 
pixels  (essentially noise with  respect to 
detection)  and  the  distribution of potential 
targets  (at  some mix  percentage)  embedded in 
that  background (the signal). This can be 
optimally  separated to maximize  the signal to 
noise ratio between the two  groups  using 
directed  principal  components  analysis (DPCA). 
The  filters  generated  by DPCA can be identified 
off line by  determing the target  spectra 
associated  with  each  cluster  using an 
appropriate mixing model. To characterize  the 
distribution for cluster  i the covariance matrix, 
Ri, is found for pixels  in the group  (without 
targets). We can also characterize the  mixed 
target-pixel  distribution  instances  associated 
with cluster  i by its  covariance  matrix, Si. 

We are interested  in  finding  a  set of orthogonal 
basis  vectors  (filters) Wi, that maximizes  the 
expected  signal to noise ratio of these  two 
distributions defined  by  their  respective  pixel 
sets.  The  generalized  eignevector  solution to the 
following  equation  accomplishes  this: 

The  set of filters  defined by Wi is  the  directed 
components  used  in step (3) of  our  algorithm. 
They  essentially  steer  the  eigenvector  solution 
away from dimensions  of  high  noise  variance  in 
a  linearly  optimal  fashion.  If  the noise 
characterized by Ri is Gaussian,  equation (4) 
results in  the standard solution  found by 
principal  component  analysis. Others have 
employed  similar  techniques  in  sub-pixel 
detection  problems  with  slightly  different 
formulations  and  have  reported good results 
[ 1 3 .  

C. Classification 

Step 3 in our  algorithm involves classifying  each 
pixel’s  projection on Wi with  a  neural  network. 
The networks are trained  with data drawn from 
the  two  distributions  used  to 
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determine  Wi, R, and Si. The  expert  network  for 
class i is  required to respond  with 1 for elements 
drawn  from Si and -1 from  those  drawn  from 
Ri. We used a  simple feed forward model 
employing 10 sigmoidal hidden units trained 
with back  propogation to get the desired  result. 
The  output can then be thresholded to achieve 
the desired  detection rate or false  positive rate 
by  examining the receiver  operator  curves. 

While the  formulation  of the problem  studied 
here  is  linear-the targets were  linearly  mixed 
into the backgrounds, the actual  classification 
problem  resulting  from  multiple target 
signatures, the distributions  resulting  from the 
clustering,  and the resultant projections  of  the 
corrected  pixels, need not be. In  addition, certain 
non-linear  elements are often  present  in  real 
problems-sensor  noise,  pixel correction, or 
actual mixing  of target and  background  that  lead 
us to believe that a  non-linear  classifier is more 
suitable for this problem.  Evidence that this is 
the case is  provided  later  in the results  section. 

4. Results 

We  evaluated the overall  performance of the 
algorithm  using the described target  set  and  two 
AVIRIS  scenes (Cuperite copper mine in  New 
Mexico and Midwestern  farmland).  We  were 
interested  in  examining its performance as the 
size of the target relative to the background  pixel 
varied, as target measurement  and  sensor  noise 
changed,  and  in the influence that different 
backgrounds  had  on  the  detection  rate. In 
addition,  we  explored  how  the  algorithmic 
choices  affected  the  detection  rate. In particular 

we  were interested in determining  whether or not 
performance  gains were achieved  with: 
1 .  The  use of DPCA  instead of the  more 

2. Incorporating  target  knowledge  into  the 

3. Using  a  non-linear  neural  network  over  a 

traditional PCA  approach. 

clustering  algorithm. 

linear  classifier. 

The following  subsection describes our 
methodology used in  evaluating the algorithm, 
the results of our evaluation on the  overall 
algorithm  performance  and the analysis of the 
modifications  we’ve made to the existing 
techniques ( 1-3). 

A. Methodology 

To provide  an accurate estimate of  how  well the 
algorithm  performs,  we used random  techniques 
for  sampling  both the training  data  (for 
clustering,  covariance  matrixes in DPCA,  and 
neural  network  learning)  and the test  data  for 
evaluating the algorithm  and  generating the 
receiver  operator  curves.  The  two  scenes 
consisted of  over % of a  million  pixels  of  which 
less than 10% were used in  developing  a  set  of 
training data. Testing data consisted of 
randomly  drawn  pixels  from  the  remaining 
scene.  Target  pixels  were  generated  by  randomly 
selecting  spectra  from the target  set  and  linearly 
mixing  them  with arbitrary background  pixels. 
The  training data was  then  evaluated  with  either 
clustering  technique to realize the prototypes (p) 
used  in step 1 of the algorithm. Figure 5 shows 
the  prototypes  generated by a sample clustering 
and  Figure 6 shows the ARM scene  segmented 
with  those  prototypes.  A  sub-sample of the 
training data (lo00 examples  each)  was used to 
generate  the  covariance  matrixes Ri and Si. The 
generalized  eigenvector  solutions W ,  to these 
matrixes  were  then solved using  a Matlab 
routine 
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figure 4. Example  prototypes obtained from the clustering  algorithm.  The  prototypes in this case 
were  generated from the Cuperite  mining  scene with 16 clusters. 

Figure 5. The ARM scene segmented with  the  prototypes. This process corresponds to step 2 in the 
algorithm. 

Training data for the  neural  network  was  again 
drawn  from  the  set  of  training  pixels. In 
addition,  a  portion of the training data for  the 
network  was  used  to  halt  training (a hold out 
set) as described in Haykin [ 5 ] .  Training of the 
networks used 5000 examples, V2 target  and Yz 
background  pixels.  The  hold  out  set  consisted of 
2500 examples not trained  upon. It is  used to 
stop training in order to prevent  over  learning  on 

the  training  data  which  tends  to  decrease 
generalization. As we have  no  prior  knowledge 
as to what  features in W the  network  would find 
useful,  we  modified  it  by  multiplying  each 
dimension i, in W, by l h ,  where 0 is the 
standard  deviation of example  pixels  projected 
on  that  eigenvector. This is  important as there 
are typically  large  variations  in  the  projected 
values  on  the  different  eigenvectors  (due to the 
way  they  were calculated).  Important  features in 
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lower  order  principal  components  could  easily 
be considered  noise  by  the  network  unless  this 
step is taken.  The modified vectors in W 
generate  the W used in step 3 of our  algorithm. 

B. Experiment 1: Detection as target size 
V a r i e S  

One of the major  goals  in  this  project  was to 
determine  how large the target had to be in 
relation to the pixel.  For search or 
characterization  scenarios,  larger  pixels for a 
given size target  represents more ground 
coverage  and  allows for a  wider  search to be 
conducted  in the same  amount of time  and for 
the sensor to be on  a  higher  (and  presumably 
safer) flying  platform.  Of  course, all sub-pixel 
detection  algorithms will benefit  by larger 
targets  relative to pixel size (among other 
variants)  making  it  difficult to draw 
comparisons  between  algorithms.  Our  tests are 
designed to provide some indication  of just what 
targevpixel ratio makes sense to describe  what 
algorithmic  modifications  make  sense, and 
finally to describe our methodology  from  which 
we  could  analyze alternate algorithms. 

In the  first  experiment,  we  examined  four mix 
ratios of target  and  background  The  algorithm 
was  evaluated  with 16 clusters derived  using the 
unmodified  clustering  algorithm. No noise  was 
added  to the targets  or the background  pixels. 
The  natural  (sensed)  variation in the example 
spectra contained  in  a  cluster  or the target gives 
an upper bound on  the  performance of the 
algorithm  for  the  given  parameters  (it is unlikely 
that adding  noise  will result  in  better 
performance).  Obviously changes in the 
parameters  will  move  the  detection  rates  and 
these  will be investigated  in  later  experiments. 
Figure 6 plots  the  receiver  operator  curves 
(detection  vs. false positives)  for mix 
percentages of 2%. 5% and 10%. 25% target 
mix  resulted in 100% detection  (not  shown)  with 
no false  positives.  The  plots  shown  consist of 
averaging the results from 8 of  the 16 clusters 
(over 50,000 pixels  sampled). 

From  the  graph,  it  is  clear  that  even  substantial 
improvement to a 2% target mix  is  unlikely to 
result in a  reasonable  detection  algorithm  (unless 
used as a  pre-processor).  The  detection rate is 
simply  too  low at  any  useful  level  of false 
positives.  Even  the 5% graph  shown  here  is 
unacceptable  with  respect to false  positives. 
However it is significantly  better  than 2% and  is 
low  enough to allow  us to evaluate algorithmic 
modifications.  The 10% graph is simply too 
good-any  algorithmic  changes  would  require 
hundreds  of thousands of  pixel  evaluations to 
show  significance  (in  improvement)  while  it 
should be readily  apparent  at the 5% level. For 
purely  pragmatic  reasons our evaluations of 
algorithmic  parameters and modifications are 
based on target mixes of 5%. 

C. Experiment 2: Changing the number of 
clusters (n) and the type of clustering 

Segmenting  the  scene into n clusters  is  the  factor 
that has  the  largest  impact  on  detection  rates. 
Increasing  the size of n means that the filter  set 
and  classifier  associated  with  a  particular  cluster 
will, on average,  have as input  a  more  compact 
distribution.  Similarly, making  more  responsive 
cluster--the  distributions of  those  clusters of low 
contrast with  the target set  narrower-means 
that  each  classifier  gets  about  the  same  problem 
difficulty. This makes discrimination  between 
target  and  background  considerably  easier  and 
reduces  variance  in  detection  rates  across 
clusters. 

Figure 7 shows  the  receiver  operator  curves  for 
clustering  with n equal to 16, 64 ,  or 128. The 
size of the  neural  networks,  the  type of 
clustering,  target  mixtures,  etc., are held 
constant for each cluster size.  There is some 
natural  variation  in the clustering  algorithm 
(initial  clusters are randomly  chosen  and  local 
minima exist) so that some  variation.  is to be 
expected  in  the  overall  detection  rates.  However 
the  differences  between  the  detection  rates  for 
the  various  size clusters are significant.  Figure 7 
clearly  shows  the  improvement  obtained by 
increasing  the  number of clusters. 
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Figure 6. Receiver  operator  curves  for neural network output as target mix in 
background  pixel  varies as a percentage  of  pixel size. The three curves  show 
1096,595, and 2% target mix. At 25% mix (not  shown) the algorithm had 100% 
detection  with no false  positives. 
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Figure 7. Receiver  operator  curves  for  neural  network  output as number of 
clusters  varies.  Each  curve is averaged  over  the same number of  pixels to realize 
the  detection  rate for the  given  level of false positives. Considerable  improvement 
is achieved  by  increasing  the  number  of  clusters. 
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Figure 8. Receiver  operator  curves  for neural network output  for the two different 
clustering methods, The  lower  curve is  the average  detection  rate  for the original 
clustering algorithm (16 clusters).  The modified algorithm (16 clusters)  with  target 
knowledge clearly outperforms the  original  clustering. 
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Figure 9. Receiver  operator  curves  for  neural  network  output as noise is 
added to pixel  elements.  Effectively, this type of noise measures algorithmic 
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performance as Sensor  quality  changes.  Shown are the  curves  for the original, 
10,so SNR 
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Figure 10. Receiver  operator  curves  for neural network  output as SNR varies  on 
the mixed target  elements.  The  targets  shown  include  the original target set along 
with targets modified wing SNRs of 10,20, and 50. 

Adding  target  knowledge to the  clustering 
algorithm  demonstrates the impact  background 
contrast has on the detectability of targets mixed 
into that background. Just as increasing  the 
number  of clusters makes the discrimination task 
easier for each  expert classifier, making  each 

D. Experiment 3: Adding Noise to the 
Targets and Sensor 

The  filter  sets are specifically  designed to 
minimize  the  impact of noise  in the detection 
process.  However,  significant  noise is bound to 
impact the detection  rates.  The  next  two  figures 
examine the impact  of  noise  on the target  set 
(how  well  we  know  the target spectra) and  the 
sensor  (how  well  the  sensor  images the scene). 
Figure 9 gives the receiver  operator  curves  for 
the  original  cluster  and with SNR of 50 and 10. 
In  this case,  Gaussian  noise  was  added to the 
pixel  prior to evaluation  after step 1 in the 

cluster  have  about  the  same  intrinsic  difficulties 
also improves  the  average  detection rate for the 
scene.  Figure 8 shows  the  improvement  obtained 
by  adding target knowledge to the clustering 
process. 

algorithm. This simulates poor calibration,  noise 
in  calculating  reflectance, or simple  sensor 
noise. The  impact  on the algorithm is substantial 
at  the 5% mix percentage  shown.  A  much 
smaller  impact  on  performance is seen at the 
10% target mix for the levels of noise  injected 
here  (possibly  indicating  that  the 5% mix is 
quite near the  detectability  limit). 

Figure 10 provides the impact  of  noise 
degradation on the  target  set. This represents 
less than  perfect  knowledge  about  the  target 
spectra or its  properties. Again, Gaussian noise 
is  added (per band)  to  targets  at 10, 20, and 50 
SNR and  the  resultant  receiver  operator  curves 
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5. Conclusion 

A novel detection algorithm and  our  evaluation 
methodology are described here.  The  detection 
algorithm was  shown  to  perform  detection  at a 
rate of over 99%  with false positives  less  than 
0.1% on a set of targets mixed  at  10% with 
background pixels. For  larger  targets,  the 
detection rates  approach 100% (at 25% mix, 
the algorithm was perfect). 

We also show a number of modifications  to  the 
basic detection approach. We  used clustering to 
divide up  the  problem into a number of 
partitions so that  each cluster can  be  analyzed 
independently. The use of  directed  principal 
components instead of the standard  principal 
component analysis also provided a significant 
performance boost. A modified clustering 
algorithm was  shown  to  more  equitably (with 
respect to  the expert networks) divide  up  the 
problem, resulting in performance 
improvements. Finally, our analysis  shows  that 
improvements (or control) of variants  prior  to 
segmenting the scene may  impact  the  detection 
in  more fundamental ways  than  does 
knowledge  about  the  target data. 

The  research described in this  paper  was 
carried out by the Jet Propulsion  Laboratory, 
California Institute of  Technology,  under a 
contract with the National  Aeronautics  and 
Space Administration. 
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